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We investigate the growth of a mixing zone in the displacement of oil by a solvent.
Such a zone usually takes the form of long thin fingers of solvent which protrude into
the oil. However, despite the existence of reasonably good empirical models for the
evolution of mixing zones, there is limited theoretical understanding of the observed
growth. Of particular interest is the rate at which the leading edge of the mixing
zone grows. In this paper we establish the structure of the mixing zone, and reveal a
critical mechanism that plays a role in the growth of the leading edge of the mixing
zone. It turns out that there is a close link between the growth rate of the mixing
zone and a shape selection problem for Saffman–Taylor fingers.
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1. Introduction
The existence of a viscous fingering instability when a less viscous fluid displaces

a more viscous fluid, either in a porous medium or a Hele-Shaw cell, has been well
documented (Saffman & Taylor 1958; Homsy 1987). One of the most important
properties of the viscous fingering instability is that the smallest wavelength
disturbances generally grow fastest, although mechanisms such as diffusion or a diffuse
initial condition typically lead to the existence of a cutoff or least stable wavelength
(see Hickernell & Yortsos 1986; Tan & Homsy 1986; Riaz, Pankiewitz & Meiburg
2004), leading to the expectation that small-wavelength fingers will form. This type
of instability is suggestive of an ill-posed problem and indeed the simplest model
of the displacement of two fluids with contrasting viscosity, the Muskat problem,
has been shown in Siegel, Caflisch & Howison (2004) to develop singularities in the
curvature of the interface between the two fluids. In enhanced oil recovery, either a
hydrocarbon solvent or supercritical carbon dioxide may be used to displace oil from
an oil reservoir. This leads to a miscible displacement between the two fluids with
molecular diffusion between the two fluids and a smoothly varying viscosity, which
may be modelled by

∇ · u = 0, (1.1)

u = − k

µ(c)
∇p, (1.2)

φ
∂c

∂t
+ ∇ · (uc) = D∇2c, (1.3)
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where u is the total flux of fluid per unit area, k is the permeability of the medium,
c is the volume fraction of solvent, p is the pressure in the fluid; also, µ(c) is the
viscosity of a homogeneous mixture of oil and solvent with a volume fraction c of
solvent which is taken (see Koval 1963) as

µ(c) =
(
µ−1/4

s c + µ−1/4
o (1 − c)

)−4
, (1.4)

where µs and µo are the viscosities of pure solvent and pure oil, respectively. This
model is well posed (see Mikelić 1993).

In (1.3) we treat diffusion as isotropic and constant with diffusion coefficient D;
however, in the real problem such a model for diffusion will not necessarily hold
true due to the effect of hydrodynamic dispersion. The above model also neglects
the effect of gravity which is permissible when either the densities of the two fluids
approximately match, the applied pressure gradients are large, or when the flow is in a
thin horizontal layer. We believe that the essential behaviour of the physical problem
can often be captured by this more simple model, but we shall later make note of
instances where different models of diffusion may lead one to different conclusions.

The model (1.1)–(1.3) can be non-dimensionalized with lengths scaled by the size
of the reservoir L, and the time scaled by φL/U , where U is representative of the flux
of fluid in the reservoir. On non-dimensionalization we find that the behaviour of the
model depends on two important non-dimensional parameters: the Péclet number
Pe = UL/D, being the ratio between the time scale for diffusion and the time scale
for convection, and the mobility ratio M = µo/µs . In enhanced oil recovery processes
the Péclet number will be large and the mobility ratio will be greater than 1.

There have been numerous numerical simulations of (1.1)–(1.3) (Peaceman &
Rachford 1962; Tan & Homsy 1988; Zimmerman & Homsy 1991, 1992; Christie,
Muggeridge & Barley 1993; Rogerson & Meiburg 1993; Tchelepi et al. 1993;
Tchelepi & Orr 1994; Chen & Meiburg 2000; Ruith & Meiburg 2000; Yang, Yortsos &
Salin 2002; Riaz & Meiburg 2003) which have all shown that viscous fingers will still
form provided that the Péclet number is sufficiently large. When the Péclet number
is very large it has been observed that the width of the fingers is small, and accurate
numerical solution is costly. Although the detailed fingering pattern may be difficult to
reproduce, the numerical simulations of Zimmerman & Homsy (1992) and Yang et al.
(2002) have suggested that the mean concentration of solvent, averaged across the
fingers, may be much simpler to describe. This is especially true when the geometry of
the problem is quite simple such as a linear flood, where the applied pressure gradient
is solely in the x direction. Empirical models are available which attempt to model
the mean transport of the solvent through the reservoir, the simplest of which is due
to Koval (1963) and is given by

∂c̄

∂t
+ U

∂

∂x

(
Mec̄

1 + (Me − 1)c̄

)
= 0, (1.5)

where c̄ is the volume concentration of solvent averaged across the fingers, U is the
total flux of fluid and Me is an ‘effective’ mobility ratio, defined by

Me =
(
0.22M1/4 + (1 − 0.22)

)4
, (1.6)

where the value 0.22 has been chosen to fit with the empirical recovery data of
Blackwell, Rayne & Terry (1959).

The Koval model is also supported by numerical simulations of (1.1)–(1.3) in Yang
et al. (2002) and Booth (2008), when the Péclet number is large. The Koval model
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should be thought of as an ad-hoc fit to the available data from experiments and
numerical simulations and it has no rigorous derivation. Efforts have been made
in Todd & Longstaff (1972), Fayers (1988) and Fayers, Blunt & Christie (1992) to
produce an empirical model that both fits the data and gives a reasonably accurate
description of the internal structure of the viscous fingering. These models are capable
of matching not only the growth rate of the fingering region but also the pressure drop
through the fingering region, and allow for fully three-dimensional simulations with
the possible inclusion of gravity segregation. Ultimately all of these models rely on
some ad-hoc matching with data from physical experiments (see Blackwell et al. 1959;
Tchelepi et al. 1993) and numerical simulations. In the case of the model by Todd
and Longstaff (Todd & Longstaff 1972), as with that of Koval (Koval 1963), there is
only a single matching parameter, whereas the Fayers model (Fayers 1988) introduces
a more sophisticated ‘fingering function’. The model by Todd and Longstaff is widely
used for simulating miscible flow in real-world reservoir engineering applications.

One of the most important features of the Koval model is that, as a hyperbolic
equation, it predicts that there is a finite speed at which the mixing zone can encroach
into the oil. This speed is equal to UMe, and may be interpreted as the speed at which
the leading finger tips must travel. As noted in Yortsos & Salin (2006), this observed
speed of the finger tips is much lower than a näıve analysis would suggest. If a region
of pure solvent and a region of pure oil were to be acted on by the same pressure
gradient then by (1.2) the velocity of the solvent region would be M times faster than
the velocity of the oil region. One might therefore expect that it is possible for a
small volume of solvent in the leading finger tips to travel with a speed equal to UM ,
which is much faster than the observed speed. An explanation as to why the mixing
zone spreads at the rate predicted by the Koval model (Koval 1963) is required to
understand the averaged behaviour of miscible viscous fingers.

As an aside we make note of the important relationship between miscible viscous
fingering and miscible density fingering as described by Wooding (1969). When the
viscosity ratio between the two fluids is close to 1, it is possible to show that, with a
rescaling of diffusion, the two problems are equivalent Manickam & Homsy (1995).
Furthermore, one finds that the growth rate of the mixing zone as suggested by Koval
for viscous fingering agrees with the observations of Wooding (1969) of miscible
density fingering in Hele-Shaw cells. This agreement provides further support for the
validity of the Koval model over a wide range of values of M .

In this paper we establish an idealized model for the structure of fingering in the
mixing zone, and thereby deduce a possible explanation for the observed growth rate
of the mixing zone.

2. Homogenized model of fingering
In order to compare our theory with the Koval model, and much of the physical

and numerical experiments available, we consider a simple two-dimensional linear
flood with an applied pressure gradient in the x direction, the strength of the pressure
gradient chosen to ensure that there is a constant flux of fluid through the reservoir.
We can gain a basic insight into the formation of fingers by considering the linear
stability of (1.1)–(1.3).

In contrast to the linear stability analysis of the Muskat problem there is a
maximum rate of growth of disturbances and both a least stable wavelength and cutoff
wavelength so that all disturbances of wavelength less than the cutoff wavelength are
stable (Tan & Homsy 1986). As the Péclet number increases the least stable wavelength
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and the cutoff wavelength both decrease, suggesting that the width of fingers will
decrease as the Péclet number increases. Both linear stability analysis and numerical
simulations (see Booth 2008) suggest that for Pe � 1 the typical width of the fingers
is proportional to Pe−1/2. It is also possible to predict the Pe−1/2 scaling by noting
that it is the only scaling which ensures that neither diffusion nor convection are
negligible in (1.3) as Pe → ∞. The width of fingers depends on Pe which in turn
depends on the length of the domain. This fact seems peculiar, however it should be
understood that it is not directly the length L of the domain, but the induced time
scale L/U , that controls the width of fingers.

We therefore propose that the mixing zone is constructed of many long thin fingers
with the aspect ratio of the fingers proportional to Pe−1/2, each aligned approximately
along the x-axis. The concentration of solvent is then a rapidly varying function of y,
and so we write c ∼ c0(x, Y, t) + O(ε), where Y = y/ε, and ε = O(Pe−1/2) is a typical
value of the finger-width. The pressure satisfies the equation

∇ ·
(

1

µ(c)
∇p

)
= 0, (2.1)

and we therefore seek a solution for the pressure of the form

p ∼ p0(x, Y, t) + εp1(x, Y, t) + ε2p2(x, Y, t) . . . , (2.2)

from which we find that

p0(x, Y, t) = a(x, t)

∫ Y

0

µ(c0(x, Y ′, t)) dY ′ + p̂0(x, t), (2.3)

where a and p̂0 are arbitrary functions of x and t . If we did not take a = 0 in the
above equation then, since µ > 0, we would find that the pressure grows unboundedly
as we shrink ε to zero so that Y → ∞. We therefore conclude that the leading-order
pressure is independent of Y .

The next-order terms of (2.1) lead us to conclude that

p1(x, Y, t) = b(x, t)

∫ Y

0

µ(c0(x, Y ′, t) dY ′ + p̂1(x, t), (2.4)

where b(x, t) and p̂1(x, t) are arbitrary functions, and once again to ensure that p1

remains bounded, and our asymptotic expansion (2.3) remains valid, as ε → 0 we
require that b = 0. Finally, we look at the O(1) terms of (2.1) from which we find that

∂p2

∂Y
= −µ(c0(x, Y, t))

∂

∂x

(∫ Y

0

1

µ(c0(x, Y ′, t))
dY ′ ∂p0

∂x

)
+ µ(c0(x, Y, t))d(x, t), (2.5)

where d(x, t) is an arbitrary function of x and t .
As ε → 0, Y → ∞, we suppose that there is some well-defined local harmonic

average of µ(c0(x, Y, t)), µ∗(x, t), defined so that for large Y∫ Y

0

1

µ(c0(x, Y ′, t))
dY ′ ∼ 1

µ∗(x, t)
Y + O(1). (2.6)

Since the viscosity is bounded above zero, the existence of such an average is ensured
if, for instance, c0 is a periodic function of Y , but is also ensured under much weaker
assumptions; for example, if c0 is thought of as a random function then stationarity
with respect to Y ensures that a local average may be well defined and, if the
randomness is also ergodic, the local average will be the same as the local value of
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the ensemble average. With the harmonic average of the viscosity thus defined we
have that

∂p2

∂Y
∼ −µ(c0)

∂

∂x

(
1

µ∗
∂p0

∂x

)
Y + O(1), (2.7)

and so we find, to ensure that p2 does not grow unboundedly as ε → 0, that the
leading-order pressure must solve

∂

∂x

(
1

µ∗
∂p0

∂x

)
= 0, (2.8)

and if the applied pressure gradient is such that the mean flux is equal to 1, then the
local pressure gradient is simply given by

∂p0

∂x
= −µ∗(x, t). (2.9)

Note that while the leading-order pressure is independent of Y , the flux of fluid is
Y -dependent with u = (u, v) given by

u ∼ u0 = − 1

µ(c0(x, Y, t))

∂p0

∂x
(x, t) =

µ∗

µ(c0)
, (2.10)

v ∼ εv1 = −ε
1

µ(c0(x, Y, t))

∂p2

∂Y
(x, Y, t) = −ε

∂

∂x

(∫ Y

0

µ∗

µ(c0)
dY ′

)
+ εṽ1(x, t), (2.11)

where ṽ1 in general depends on distant (in Y ) boundary conditions; however, ṽ1 may
be set to zero if the concentration profile is symmetric about the line Y = 0, which
might be the case if for instance the concentration is periodic in Y . With the above
expressions for the leading-order flux in each direction, we are able to write down the
model for the evolution of the concentration of solvent, namely (on suppressing the
0 subscripts from the leading-order concentration)

∂c

∂t
+

∂

∂x

(
µ∗

µ(c)
c

)
+

∂

∂Y

((
−

∫ Y

0

∂

∂x

(
µ∗

µ(c)

)
dY ′ + ṽ1

)
c

)
=

1

Pe∗
∂2c

∂Y 2
, (2.12)

where Pe∗ = ε2Pe = O(1), since we have assumed that ε = O(Pe−1/2).
Equation (2.12) provides our fundamental model for the evolution of the solvent

concentration profile in the mixing zone, at least away from the roots and tips of
fingers where our large aspect ratio assumption may break down. We shall analyse
this model in more detail in § 2.2, but first we shall attempt to use this model to
describe the evolution of the averaged concentration of solvent in the style of the
Koval model.

2.1. Averaged model of fingering

Integrating (2.12) with respect to Y yields

1

Pe∗
∂c

∂Y
+

(∫ Y

0

∂

∂x

(
µ∗

µ(c)

)
dY ′

)
c − ṽ1c =

∫ Y

0

(
∂c

∂t
+

∂

∂x

(
µ∗

µ(c)
c

))
dY ′ + e(x, y, t),

(2.13)

where e is a constant function of integration. For large Y the right-hand side of the
above equation is asymptotically equal to(

∂c̄

∂t
+

∂

∂x

(
µ∗ c

µ(c)

))
Y + O(1), (2.14)
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where c̄ is the transverse average of c defined so that∫ Y

0

c(x, Y ′, t) dY ′ ∼ c̄Y, (2.15)

for large Y and c/µ(c) is similarly defined. To ensure that the left-hand side of (2.13)
does not grow unboundedly as Y → ∞ we require that

∂c̄

∂t
+

∂

∂x

(
µ∗ c

µ

)
= 0. (2.16)

However, (2.16) is not closed since neither µ∗ nor c/µ(c) is known as a function of
c̄. One way of closing the model, as noted in Yortsos & Salin (2006), is to assume
that diffusion is entirely negligible with a sharp interface between pure oil and pure
solvent even on the microscopic scale. The concentration may now only take the
values 0 (in the oil) and 1 (in the solvent) and we find that

µ∗ =
1

Mc̄ + 1 − c̄
,

(
c

µ(c)

)
= Mc̄, (2.17)

which on substitution into (2.16) yields the ‘näıve’ Koval model,

∂c̄

∂t
+

∂

∂x

(
Mc̄

Mc̄ + 1 − c

)
= 0. (2.18)

The näıve Koval model (2.18) is superficially similar to the Koval model (1.5),
predicting the same qualitative behaviour; however, it completely fails to predict the
correct growth rate of the mixing zone. It is clear that our näıve assumption is not
reasonable; diffusion plays an important rôle in the scale of the fingers. While it is
possible to derive the Koval model (1.5) by hypothesizing a sharp interface between the
oil and a specific mixture of oil and solvent, it is clear from numerical simulations and
physical experiments that this can be only thought of as an effective closure condition
and does not represent the true physical situation. We have lost information by
performing the averaging process that led us from (2.12) to (2.16), and, to be able
to more fully understand the relationship between the average concentration and the
averages µ∗ and c/µ(c), and also to explain the growth rate of the mixing zone, we
must analyse (2.12) in more detail.

2.2. Shock formation

For the remainder of the paper we shall assume that c is a periodic function of
Y , although possibly with a period W greater than 1 as shown in figure 1(b). We
also assume that Y = 0 is a line of symmetry such as a symmetric finger tip or root,
allowing us to take ṽ1 = 0. The assumption of periodicity is primarily to allow for
simpler analysis; however, numerical simulations (see figure 2) appear to exhibit some
periodic structure.

Equation (2.12) possesses a few simple solutions, such as solutions independent
of x, for which v1 = 0 and so only diffusion acts, and also simple travelling wave
solutions independent of Y with c = c(x − t). These travelling wave solutions are
unstable to two-dimensional disturbances as shown in Yang et al. (2002). Obtaining
solutions that represent fingers is somewhat more difficult, and so we have conducted
some preliminary numerical investigations. Our numerical simulations indicate that
discontinuities in the concentration may form along lines parallel to the Y -axis,
suggesting that (2.12) may admit a weak solution with shocks. The shocks form at
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(a)

W

(b)

Figure 1. Two possible structures of periodic fingering pattern: (a) periodic fingers with
period 1, (b) periodic concentration profile with period W > 1.

Figure 2. Numerical simulation of miscible viscous fingering (defined in (1.1)–(1.3)) from
Booth (2008), with a constant flux of solvent (on left of image) into oil, and M = 5, Pe = 3000.
Numerical simulation uses a high-resolution finite-volume method with flux limiters.

the ‘finger tips’, the points where the solvent has encroached the furthest into the oil,
and the ‘finger roots’, the point where the oil has remained furthest behind.

An accurate numerical simulation of the model, capable of resolving the speed of
the shocks, requires us to solve the problem in conservative form, or equivalently solve
a weak formulation of (2.12); however, as we now show, the non-local dependence of
the flux on the concentration prevents a standard weak formulation. Since the flow is
incompressible we may deduce the existence of a stream function ψ defined by

∂ψ

∂Y
=

µ∗(x, t)

µ(c(x, Y, t))
, (2.19)

so that (2.12) becomes

∂c

∂t
+

∂

∂x

(
∂ψ

∂Y
c

)
− ∂

∂Y

(
∂ψ

∂x
c

)
=

1

Pe∗
∂2c

∂Y 2
. (2.20)

In attempting to derive a weak formulation of the above equation we shall inevitably
come across a term of the form ∫ ∫

∂φ

∂Y

∂ψ

∂x
c dx dY, (2.21)
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where φ is our test function. It is not possible to pass the x-derivative of ψ on to
the test function φ without coincidentally causing an x-derivative of c to appear. We
expect c to be discontinuous in x and therefore we also expect ψ to be discontinuous
in x; however, it is not possible to express ψ as a function of the local value of c,
since ψ depends on the global behaviour of c via µ∗.

It does not therefore appear to be possible to produce a weak formulation of
(2.12) for a shock parallel to the Y -axis. An alternative approach to dealing with
weak formulations of a problem is to regularize the problem, i.e. re-examine the
assumptions that we have made to arrive at (2.12) to find the local behaviour near to
the shocks. This approach is considered in the next section.

3. Tip and root modelling
The shocks encountered in the previous section correspond to the tips and roots

of fingers. To find the correct behaviour close to shocks in our homogenized model
(2.12) we should rescale (1.1)–(1.3) close to tips and roots and then proceed to match
with our solution of (2.12) either side of the shock. The rescaling of y by ε in § 2 has
two effects: firstly, to leading order the pressure may be treated as independent of Y ,
and secondly, longitudinal diffusion may be neglected. Previous works of Menon &
Otto (2005) and Yortsos & Salin (2006) have attempted to explain the observed
growth rate of the mixing zone by retaining longitudinal diffusion, using Burgers’
model for viscous shocks in gas dynamics as an analogue. Assuming, as we have, that
the diffusion in the longitudinal and transverse directions are of the same order of
magnitude leads us to conclude that longitudinal diffusion becomes important once
the width of the shock is of order ε2. However, the assumption that the pressure is
independent of Y breaks down once the width of the shock is of order ε, and so we
should examine this behaviour first.

If the position of the shock is given by x =F (t), then we consider rescaling near
the shock with

X =
x − F (t)

ε
(3.1)

and

p ∼ p0(t) + εP (X, Y, t) + · · · , (3.2)

where p0(t) is the pressure obtained from matching to regions either side of the shock.
With these scalings (1.1)–(1.3) becomes

∂

∂X

(
1

µ(c)

∂p

∂X

)
+

∂

∂Y

(
1

µ(c)

∂p

∂Y

)
= 0, (3.3)

with the concentration satisfying

∂c

∂t
− U

ε

∂c

∂X
− 1

ε

∂

∂X

(
c

µ(c)

∂P

∂X

)
− 1

ε

∂

∂Y

(
c

µ(c)

∂P

∂Y

)

+
∂

∂X
(u1c) +

∂

∂Y
(v1c) =

1

Pe∗

(
∂2c

∂X2
+

∂2c

∂Y 2

)
. (3.4)

The coefficient of ∂c/∂t is small compared to ε−1 and so the quasi-steady-state
assumption applies with c and P only depending on t through the boundary conditions
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and through U . After an initial transient where t = O(ε), we have

U
∂c

∂X
+

∂

∂X

(
c

µ(c)

∂P

∂X

)
+

∂

∂Y

(
c

µ(c)

∂P

∂Y

)
= 0. (3.5)

Equations (3.3) and (3.5) form our model for the tip region and we note that to
leading-order diffusion is negligible. This is because the time scale associated with
this tip region is very small.

Matching with solutions to (2.12) either side of the shock is necessary to provide
the boundary conditions for our tip-scale model. If c±(Y, t) are the transverse
concentration profiles ahead of and behind the tip/root regions then our boundary
conditions are

c → c±,
∂P

∂X
→ −µ∗

± as X → ±∞, (3.6)

where µ∗
± are the harmonic averages of µ(c±) (independent of Y ). To make further

progress we shall restrict ourselves to considering only the leading finger tips, as
circled in figure 1, so that c+ = 0 and µ∗

+ = 1. The rate of growth of the leading
finger tips governs the rate of growth of the edge of the mixing zone, and so an
understanding of the leading finger tips will hopefully provide an explanation for
the observed growth rate of the mixing zone. We can easily determine one ‘shock
condition’ at the leading finger tip by requiring that the total flux of fluid into the
tip region is equal to the total flux leaving the tip region. By integrating (3.3) we find
that

U =
µ∗

−
Wc̄−

∫ W

0

c−

µ−
dY, (3.7)

where

c̄− =
1

W

∫ W

0

c− dY, (3.8)

and W is the period of the fingering pattern, or alternatively the width between
leading finger tips expressed as a multiple of the mean finger width as shown in
figure 1(b). We assume that the leading fingers are symmetric to leading order so that
we may take the finger tip to lie on the line of symmetry Y = 0. Equations (3.3) and
(3.5) together with the boundary conditions (3.6) are invariant under the rescalings

X → λX′, Y → λY ′ and P → λP ′,

and so we may freely rescale X, Y and P by W/2 without altering our problem, and
allowing us to solve for a half-finger in 0 < Y < 1. The period W between leading
fingers only appears in the downstream concentration profile where it is a measure
of the finger width as a fraction of the separation between fingers.

One particular family of symmetric, weak solutions with discontinuous boundary
conditions as X → −∞ corresponds to Saffman–Taylor fingers. Suppose the
downstream concentration profile consists of a particular homogeneous mixture of
solvent and oil with solvent concentration ce, separated from a region of pure oil.
The downstream viscosity profile is

µ−(Y ) =

{
1/Me, 0 < Y < λ,

1, λ < Y < 1,
(3.9)
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where Me = 1/µ(ce) and λ ∝ 1/W , and we find from (3.7) that the velocity of the tip
is given by

U =
Me

1 + λ(Me − 1)
,

as found in Saffman & Taylor (1958). The Saffman–Taylor finger solution is clearly
a possible weak solution of (3.3)–(3.5) when periodic fingers are sought. In fact the
Saffman–Taylor finger is the only possible solution, when periodic fingers are sought,
as we shall now show.

We note that in our tip-scale model (3.3) and (3.5) diffusion does not appear. It
is only possible for the oil and solvent to mix in a further inner-inner region, i.e. an
inner region of our tip-scale problem located along a sharp jump in the concentration.
The rate at which oil mixes with solvent over these inner-inner regions is small, and
so we must not only conserve the total mass of fluid and the total mass of solvent,
but also the total mass of ‘pure oil’, i.e. oil that is not mixed with any solvent. The
total flux of pure oil upstream must therefore be equal to the total flux of pure oil
downstream, ensuring that there must be a finite-width region of pure oil downstream
of the finger tip. If this region is given by λ < Y < 1, then we find from equating the
flux of pure oil upstream and downstream of the finger tip that

(1 − λ)(µ∗
− − U ) = 1 − U, (3.10)

where as before

1

µ∗
−

=

∫ 1

0

1

µ(c−(Y ))
dY.

Using (3.7) to find U , (3.10) becomes

1 − λ +
λ

c̄−

∫ 1

0

c−(Y )

µ(c−(Y ))
dY =

1

µ∗
−

.

We can write ∫ 1

0

1

µ(c−(Y ))
dY =

∫ λ

0

1

µ(c−(Y ))
dY +

∫ 1

λ

dY

= 1 − λ +

∫ λ

0

1

µ(c−(Y ))
dY,

and so we obtain the condition that

λ

c̄−

∫ 1

0

c−(Y )

µ(c−(Y ))
dY =

∫ λ

0

1

µ(c−(Y ))
dY,

or, since c−(Y ) = 0 in λ < Y < 1,∫ λ

0

c−(Y )

µ(c−(Y ))
dY =

1

λ

∫ λ

0

c−(Y ) dY

∫ λ

0

1

µ(c−(Y ))
dY. (3.11)

However, since µ is a monotonic decreasing function of c we require that

1

λ

∫ λ

0

c−(Y )

µ(c−(Y ))
dY �

1

λ2

∫ λ

0

c−(Y ) dY

∫ λ

0

1

µ(c−(Y ))
dY,

with equality if and only if c−(Y ) is constant in 0 < Y < λ. Since (3.11) implies
that equality holds we see that c−(Y ) must be constant in 0 < Y < λ, and
the only permissible downstream concentration profile corresponds to that of the
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Saffman–Taylor finger with a region of oil separated from a region with a constant
concentration of solvent. This result implies that the only possible tip-scale solution
corresponds to a Saffman–Taylor finger.

Equations (3.3) and (3.5) admit Saffman–Taylor finger solutions with arbitrary
width λ, and therefore allow a wide range of possible speeds for the growth of the
mixing zone. The growth rate of the leading edge of the mixing zone depends on
both the separation of the leading finger tips and also the concentration of solvent
in the leading finger tips. We have not excluded the possibility that the leading finger
tips consist of a homogeneous mixture of solvent and oil, rather than pure solvent.
It has proved possible to explain the selection of the λ= 1/2 Saffman–Taylor finger
by the introduction of both surface tension (Combescot et al. 1986; Chapman 1999)
and kinetic undercooling (Chapman & King 2003) as regularizations of the Muskat
problem, and it has been suggested in Chapman & King (2003) that the λ= 1/2
solution might be expected to be chosen for most possible regularizations. If the
λ= 1/2 solution is taken for this problem, we do indeed find that the growth rate of
leading fingers is lower than that predicted by näıve modelling, yet the growth rate
still does not match the data of Blackwell et al. (1959). For mobility ratios close to
1, the λ=1/2 solution overpredicts the growth, at least if the finger contains pure
solvent at the tip. For large mobility ratios the λ= 1/2 solution severely underpredicts
the growth of the finger, regardless of the value of the assumed concentration of
solvent in the finger tip.

It is worth noting that the introduction of diffusion does not appear to allow a
similar analysis to that in Chapman & King (2003); in particular, it is not possible to
treat the displacing fluid as a rigid body, and so the finger-width may be dependent
on the mobility ratio. It is possible that the introduction of diffusion does not lead to
the usual λ= 1/2 solution, and this may then explain the observed growth rate.

4. Conclusions
The Koval model appears to be an accurate representation of the averaged

concentration profile in miscible viscous fingering when Pe � 1. In this regime many
long thin fingers are formed, and the large aspect ratio of these fingers ensures that
the pressure is largely constant transverse to the direction of finger growth. Simple
averaging across the fingers leads to an underdetermined problem, and therefore
further analysis of the model prior to averaging is required. This analysis in turn
requires us to understand the behaviour near the roots and tips of fingers; this
behaviour governs the growth of the fingers and hence the growth of the mixing zone.

At the leading finger tips we have shown that the only permissible solutions
correspond to Saffman–Taylor fingers, implying the persistence of a reasonably sharp
jump between solvent and oil in these tip regions. In the contour plots of many
high-resolution numerical simulations (see Zimmerman & Homsy 1991; Rogerson &
Meiburg 1993) a sharp jump between solvent and oil can be seen near the finger tips
for large Pe. The shape selection of Saffman–Taylor fingers has been a challenging
problem in immiscible flow with small surface tension playing a crucial role. For our
problem, further analysis is required of the effect that small diffusion has near the
almost sharp interface predicted at miscible finger tips. The introduction of even very
small diffusion seemingly requires us to abandon a free boundary problem formulation
of the model, and it is not then clear how arguments for shape selection by other
regularization mechanisms may be adapted to this situation.
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Our modelling differs from some previous works (Menon & Otto 2005; Yortsos &
Salin 2006) in that our regularization of shocks in (2.12) is provided by a two-
dimensional model of the finger tips, rather than by the retention of longitudinal
diffusion. The retention of longitudinal diffusion is appropriate when the ratio
between longitudinal and transverse diffusion is large so that the Péclet numbers for
longitudinal and transverse diffusion (Pe‖ and Pe⊥, respectively) satisfy Pe‖ � O(1)
and Pe⊥ � 1. This is a conceivable physical regime for flow in a porous medium, but
numerical simulations (Yang et al. 2002; Booth 2008) show that the Koval model
maintains good agreement with solutions to (1.1)–(1.3) when in each direction the
diffusion is of the same order of magnitude.

One failing of our model is the assumption that the mean finger width does not
vary over time. As noted in Menon & Otto (2005) the mean finger width should
grow proportional to the square root of time; however, the mechanism by which this
mean growth occurs does not appear to be simple, apparently being caused by slow
transverse diffusion followed by rapid convective coalescence of fingers as noted in
Zimmerman & Homsy (1991). As it stands our model is not capable of predicting
the long-time convective evolution of the mixing zone. The mean value of Pe∗ is then
proportional to 1/t , which allows for a convective similarity variable x/t . This can
be explained phenomenologically by the gradual growth of the mean finger width
at a rate proportional to t1/2. The growth of the mixing zone is still controlled by a
solution of the finger-tip problem.
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Schlumberger. The author would like to thank his supervisors Dr C. L. Farmer and
Professor J. R. Ockendon.
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